Lightweight MDS Serial-type Matrices with Minimal Fixed XOR Count

Dylan Toh¹ Jacob Teo¹ Khoongming Khoo² <u>Siang Meng Sim</u>^{2,3}

1. NUS High School of Math and Science, Singapore

- 2. DSO National Laboratories, Singapore
- 3. Nanyang Technological University, Singapore
 - 9 May 2018 @ Africacrypt 2018

Table of Contents

2 Serial-type Matrices

- LFS Matrices
- DSI and Sparse DSI Matrices
- 3 New Lightweight Diffusion Matrices
 - Evaluating the Implementation Cost of Serial-type Matrices
 - Some Results

Table of Contents

2 Serial-type Matrices

- LFS Matrices
- DSI and Sparse DSI Matrices
- New Lightweight Diffusion Matrices
 Evaluating the Implementation Cost of Serial-type Matrices
 Some Results

Diffusion Matrices

The diffusion layer of a cipher (often expressed as a diffusion matrix) plays the role of diffusion: spread the internal dependencies.

The diffusion matrix \mathbf{M} of order k is applied to a k-tuple input vector \mathbf{u} to create the diffusion.

Its diffusion power can be quantified by the branch number of a matrix.

$$\mathcal{B}(\mathsf{M}) = \min_{\mathsf{u}\neq \mathsf{0}}(wt(\mathsf{u}) + wt(\mathsf{M}\mathsf{u})),$$

where $wt(\cdot)$ is the number of non-zero components in the vector.

Maximal Distance Separable (MDS) Matrices

Definition (MDS)

An MDS matrix **M** of order k is a diffusion matrix with optimal branch number k + 1. I.e. $\mathcal{B}(\mathbf{M}) = k + 1$.

Definition (q-MDS)

A *q*-MDS matrix **M** of order *k* is a diffusion matrix with optimal branch number k + 1 when raised to its *q*-th power. I.e. $\mathcal{B}(\mathbf{M}^q) = k + 1$

q-MDS matrix is also called recursive MDS matrix.

Hardware Implementation of Diffusion Matrices

Let $C(\mathbf{M})$ and $C(\alpha)$ be the number of XOR gates needed to implement a matrix and its coefficient respectively.

Example

The AES diffusion matrix \mathbf{M}_A (over $\mathrm{GF}(2^8)$).

$$\begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2a \oplus 3b \oplus c \oplus d \\ a \oplus 2b \oplus 3c \oplus d \\ a \oplus b \oplus 2c \oplus 3d \\ 3a \oplus b \oplus c \oplus 2d \end{bmatrix}$$

The implementation cost $C(M_A) = 4 \cdot (C(2) + C(3)) + 4 \cdot 3 \cdot 8$.

These two terms are called the variable cost and the fixed cost respectively.

Fixed Cost of MDS matrices

Proposition

All coefficients of an MDS matrix are non-zero.

Thus, the fixed cost of an MDS matrix of order k over $GF(2^s)$ is

 $k \cdot (k-1) \cdot s$

One research direction considers the serial-type matrices that are q-MDS to have an area/clock cycle trade-off to achieve lower fixed cost.

LFS Matrices DSI and Sparse DSI Matrices

Table of Contents

2 Serial-type Matrices

- LFS Matrices
- DSI and Sparse DSI Matrices

New Lightweight Diffusion Matrices Evaluating the Implementation Cost of Serial-type Matrices Some Results

LFS Matrices DSI and Sparse DSI Matrices

Table of Contents

- 2 Serial-type Matrices
 - LFS Matrices
 - DSI and Sparse DSI Matrices
- 8 New Lightweight Diffusion Matrices
 - Evaluating the Implementation Cost of Serial-type MatricesSome Results

LFS Matrices DSI and Sparse DSI Matrices

Linear Feedback Serial (LFS) Matrices

An example of serial-type matrices is the serial matrices (for clarity purposes, we call them LFS matrices) that is used in the family of hash functions PHOTON [GP+11].

Definition

An LFS matrix $\mathbf{L} = LFS(z_0, z_1, ..., z_{k-1})$ of order k is a matrix of the following form:

$$\mathbf{L}_{ij} = \begin{cases} z_j, & i = k - 1 \\ 1, & i + 1 = j \\ 0, & \text{otherwise.} \end{cases} \quad e.g. \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ z_0 & z_1 & z_2 & z_3 \end{pmatrix}$$

LFS Matrices DSI and Sparse DSI Matrices

Area/Clock Cycle Trade-off

Example

Let $L_4 = LFS(z_0, z_1, z_2, z_3)$ be a diffusion matrix over $GF(2^8)$.

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ z_0 & z_1 & z_2 & z_3 \end{pmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} b \\ c \\ d \\ z_0 a \oplus z_1 b \oplus z_2 c \oplus z_3 d \end{bmatrix}$$

The implementation cost $C(\mathbf{L}_4) = \sum C(z_i) + 3 \cdot 8$.

Suppose L_4 is 4-MDS, one can implement (costs about $\frac{1}{4}$ of MDS matrices) and reuse the circuit to update the input vector 4 times (4 clock cycles) to achieve the MDS property.

LFS Matrices DSI and Sparse DSI Matrices

Fixed Cost of LFS matrices

Theorem

If an LFS matrix of order k is k-MDS, then $z_i \neq 0$ for all i.

Thus, the fixed cost of a k-MDS LFS matrix of order k over $GF(2^s)$ is

 $(k-1) \cdot s$

Can we achieve even lower fixed cost?

LFS Matrices DSI and Sparse DSI Matrices

Table of Contents

2 Serial-type Matrices • LES Matrices

• DSI and Sparse DSI Matrices

New Lightweight Diffusion Matrices Evaluating the Implementation Cost of Ser

Evaluating the Implementation Cost of Serial-type MatricesSome Results

LFS Matrices DSI and Sparse DSI Matrices

Diagonal-Serial Invertible (DSI) Matrices

We propose a new serial-type matrix:

Definition

A DSI matrix **D** of order k is determined by 2 vectors, $\mathbf{a} = (a_1, a_2, \dots, a_{k-1}, a_k)$, where a_i 's are non-zero, and $\mathbf{b} = (b_1, b_2, \dots, b_{k-1})$, as follows:

$$D_{ij} = \begin{cases} a_1, & i = 1, j = k \\ a_i, & i = j + 1 \\ b_i, & i = j \le k - 1 \\ 0, & \text{otherwise.} \end{cases} \quad e.g. \begin{pmatrix} b_1 & 0 & 0 & a_1 \\ a_2 & b_2 & 0 & 0 \\ 0 & a_3 & b_3 & 0 \\ 0 & 0 & a_4 & 0 \end{pmatrix}$$

Theorem

Every DSI matrix $\mathbf{D} = DSI(\mathbf{a}, \mathbf{b})$ is invertible.

LFS Matrices DSI and Sparse DSI Matrices

Sparse DSI Matrices

Definition

A DSI matrix **D** of order *k* is **sparse** if **b** has: $b_{2l} = 0$, where $1 \le l < \lfloor \frac{k}{2} \rfloor$.

Example

Sparse DSI matrix \mathbf{D}_4 over $GF(2^8)$:

$$\begin{pmatrix} b_1 & 0 & 0 & a_1 \\ a_2 & 0 & 0 & 0 \\ 0 & a_3 & b_3 & 0 \\ 0 & 0 & a_4 & 0 \end{pmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} b_1 a \oplus a_1 d \\ a_2 a \\ a_3 b \oplus b_3 c \\ a_4 c \end{bmatrix}$$

The implementation cost $C(\mathbf{D}_4) = \sum C(a_i) + \sum C(b_i) + 2 \cdot 8$.

LFS Matrices DSI and Sparse DSI Matrices

Fixed Cost of Sparse DSI matrices

Corollary

Sparse DSI matrix of order k can potentially be k-MDS.

Thus, the fixed cost of a k-MDS sparse DSI matrix of order k over $GF(2^s)$ is

$$\left\lfloor \frac{k}{2} \right\rfloor \cdot s$$

Matrix type	<i>k</i> -MDS sparse DSI		<i>k</i> -MDS LFS		MDS
Fixed cost	$\left\lceil \frac{k}{2} \right\rceil \cdot s$	<	$(k-1) \cdot s$	<	$k \cdot (k-1) \cdot s$

Evaluating the Implementation Cost of Serial-type Matrices Some Results

Table of Contents

Introduction

2 Serial-type Matrices

- LFS Matrices
- DSI and Sparse DSI Matrices

3 New Lightweight Diffusion Matrices

- Evaluating the Implementation Cost of Serial-type Matrices
- Some Results

Evaluating the Implementation Cost of Serial-type Matrices Some Results

Table of Contents

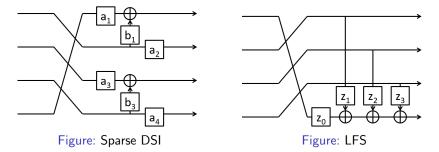
2 Serial-type Matrices

- LFS Matrices
- DSI and Sparse DSI Matrices
- New Lightweight Diffusion Matrices
 Evaluating the Implementation Cost of Serial-type Matrices
 Some Results

Evaluating the Implementation Cost of Serial-type Matrices Some Results

Circuit of Sparse DSI and LFS Matrices

Expressing the matrices as the following implementation circuits:



Evaluating the Implementation Cost of Serial-type Matrices Some Results

Saving Variable Cost for Sparse DSI Matrices

We can save some variable cost if there are identical coefficients:

$$\begin{pmatrix} b_1 & 0 & 0 & a_1 \\ a_2 & 0 & 0 & 0 \\ 0 & a_3 & b_3 & 0 \\ 0 & 0 & a_4 & 0 \end{pmatrix}$$

Suppose we have $a_2 = b_1$, then we can save $C(b_1)$.

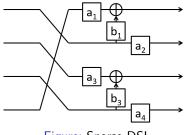


Figure: Sparse DSI

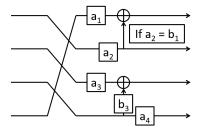


Figure: Sparse DSI saving cost

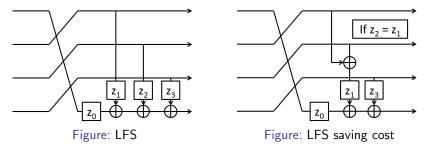
Evaluating the Implementation Cost of Serial-type Matrices Some Results

Saving Variable Cost for LFS Matrices

Similarly for LFS matrices:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ z_0 & z_1 & z_2 & z_3 \end{pmatrix}$$

Suppose we have $z_2 = z_1$, then we can save $C(z_2)$.



Evaluating the Implementation Cost of Serial-type Matrices Some Results

Total XOR count of various matrices

matrices of order k	XOR count of the entire matrix			
over <i>GF</i> (2 ^s)	XON count of the entire matrix			
Sparse DSI	$\sum C(a_i) + \sum_{b_i \neq a_{i+1}} C(b_i) + \lceil k/2 \rceil \cdot s$			
LFS	$\sum_{z_i orall j < i, z_i eq z_i} \mathcal{C}(z_i) + (k-1) \cdot s$			
MDS	$\sum \mathcal{C}(m_i) + k \cdot (k-1) \cdot s$			

where m_i 's are the entries (k^2 elements) of an MDS matrix.

We also show that the inverse of DSI and LFS matrices (backward) has the same implementation cost as the forward direction.

Evaluating the Implementation Cost of Serial-type Matrices Some Results

Table of Contents

2 Serial-type Matrices

- LFS Matrices
- DSI and Sparse DSI Matrices

New Lightweight Diffusion Matrices Evaluating the Implementation Cost of Serial-type Matrices Some Results

Comparison of Diffusion Matrices

We found new lightweight sparse DSI and LFS matrices of order 4 to 8 over $\mathrm{GF}(2^4)$ and $\mathrm{GF}(2^8)$.

Implementation cost of diffusion matrices over $GF(2^8)$

				()
k	Matrix Type	Forward	Backward	Ref.
4	Circulant	$48 + 4 \cdot 24 = 144$	$212 + 4 \cdot 24 = 308$	AES
4	LFS	9 + 2	4 = 33	[KP+14]
4	8-MDS LFS	3+2	4 = 27	[SS+17]
4	Sparse DSI	6 + 1	6 = 22	This Paper
5	IMDS left-circ.	$165 + 5 \cdot$	32 = 325	[LS16]
5	Left-circulant	$50 + 5 \cdot 32 = 210$	$290 + 5 \cdot 32 = 450$	[LS16]
5	Sparse DSI	7 + 2	4 = 31	This Paper
6	LFS A ₂₈₈	17 + 4	40 = 57	PHOTON
6	Sparse DSI	7+2	4 = 31	This Paper

Table of Contents

1 Introduction

2 Serial-type Matrices

- LFS Matrices
- DSI and Sparse DSI Matrices
- New Lightweight Diffusion Matrices
 Evaluating the Implementation Cost of Serial-type Matrices
 Some Results

Trade-off for Diffusion Matrices

In comparison with MDS diffusion matrices of order k, k-MDS LFS matrices have a fair trade-off between the area and clock cycle.

$$\begin{array}{c} \mathsf{MDS} & \xrightarrow{1 \uparrow k \text{ clock cycles}} & k-\mathsf{MDS} \\ \hline \mathsf{matrix} & \xrightarrow{k \cdot (k-1) \downarrow (k-1) \text{ s-bit XORs}} & \mathsf{LFS matrix} \end{array}$$

Our *k*-MDS sparse DSI (sDSI) matrices achieve a trade surplus.

 $\begin{array}{c|c} \mathsf{MDS} & \xrightarrow{1 \uparrow k \text{ clock cycles}} & k-\mathsf{MDS} \\ \text{matrix} & \xrightarrow{k \cdot (k-1) \downarrow \left\lceil \frac{k}{2} \right\rceil s \text{-bit XORs}} & \mathsf{sDSI matrix} \end{array}$

A natural question to ask: Can we achieve even lower fixed cost? We look at diffusion matrices of order 4.

OXS Matrix of Order 4

Sparse DSI matrix has 2 *s*-bit XORs, thus we consider matrix with only 1 *s*-bit XOR, so-called One XOR Serial (OXS) matrix.

 $\begin{array}{c} \text{4-MDS} \\ \text{sDSI matrix} & \xrightarrow{4 \uparrow \leq 8 \text{ clock cycles}} \\ 2 \downarrow 1 \text{ s-bit XORs} & \text{OXS matrix} \end{array}$

We consider $q \leq 8$, otherwise it is a bad trade-off.

Theorem

There does not exist OXS matrix of order 4 that is q-MDS, where $q \le 8$.

Therefore, we conclude that our sparse DSI matrix of order 4 has the minimal fixed cost.

Conclusion

- Introduce a new serial-type matrix called Diagonal-Serial Invertible (DSI) matrix with sparse property
- *k*-MDS sparse DSI matrix has a positive trade-off between the hardware area and clock cycle
- Found new lightweight serial-type matrices
- Prove that our sparse DSI matrix of order 4 has the minimal fixed cost

Reference

[GP+11]—J. Guo, T. Peyrin and A. Poschmann. The PHOTON Family of Lightweight Hash Functions. In CRYPTO 2011.

[KP+14]—K. Khoo, T. Peyrin, A. Poschmann and H. Yap. FOAM: Searching for Hardware-Optimal SPN Structures and Components with a Fair Comparison. In CHES 2014.

[LS16]—M. Liu and S.M. Sim. Lightweight MDS generalized circulant matrices. In FSE 2016.

[SS+17]—S. Sarkar, H. Syed, R. Sadhukhan and D. Mukhopadhyay. Lightweight design choices for LED-like block ciphers. In INDOCRYPT 2017.

Thank you. :)